当前位置:首页 > 数学建模论文 > 正文内容

粒子群算法应用(粒子群算法应用实例)

zxc1个月前 (04-04)数学建模论文6

一、粒子群算法及其应用?

粒子群算法是一种新的模仿鸟类群体行为的智能优化算法,现已成为进化算法的一个新的重要分支。全书共分为八章,分别论述了基本粒子群算法和改进粒子群算法的原理,并且详细介绍了粒子群算法在函数优化、图像压缩和基因聚类中的应用,最后给出了粒子群算法的应用综述和相关程序代码。

二、粒子群算法的应用领域有哪些?

粒子群算法在数据挖掘诸多领域的应用实例,如神经网络训练、分类器设计、聚类分析和网络社区发现等,并给出了详细的代码设计。

三、amcl算法跟粒子群算法的关系?

amcl算法是粒子群。

“粒子群”是手机端应用软件,你可以随时随地使用它创建活动或者查找活动。

在“粒子群”里可以看到活动的创建者和行动的参与者的信息,这些信息是可以作为参与者是否参加活动的参考资料,作为对活动的了解还可以看已经参与活动者之间的交流信息。

四、粒子群算法的优缺点?

优点:搜索速度快、效率高,算法简单,适合于实值型处理。

缺点:对于离散的优化问题处理不佳,容易陷入局部最优

五、遗传算法与粒子群算法哪个编程简单?

粒子群算法相对于遗传算法在编程实现上简单。粒子群算法PSO和遗传算法GA都是优化算法,都力图在自然特性的基础上模拟个体种群的适应性。它们都采用一定的变换规则通过搜索空间求解。

GA的编码技术和遗传操作比较简单,而PSO相对于GA不需要编码,没有交叉和变异操作,粒子只是通过内部速度进行更新,因此原理更简单、参数更少、实现更容易。

六、粒子群算法中的适应度?

它的适应度就是指目标函数的值。一般来说,目票函数的选择由具体问题来决定,假如是背包问题,适应度即放入包中物体的总价格。 初始粒子位置和速度的位置一般随机产生。但是在某些领域,如果已有其他的算法可以产生可行解的话,可以用这个可行解来初始化,这样更容易得到最优的解

七、二进制粒子群算法的优点?

优点:PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。同遗传算法比较,PSO的优势在于简单容易实现,并且没有许多参数需要调整。

缺点:在某些问题上性能并不是特别好。网络权重的编码而且遗传算子的选择有时比较麻烦。最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。

八、粒子群算法属于哪一类?

粒子群算法属于计算智能的范畴,如果按照学科分的话当然是计算机学科。另外粒子群算法是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。——————————————————————————另外关于计算智能的相关介绍便可以了解计算智能的主要方法有人工神经网络、遗传算法、遗传程序、演化程序、局部搜索、模拟退火等等。这些方法具有以下共同的要素:自适应的结构、随机产生的或指定的初始状态、适应度的评测函数、修改结构的操作、系统状态存储器、终止计算的条件、指示结果的方法、控制过程的参数。计算智能的这些方法具有自学习、自组织、自适应的特征和简单、通用、鲁棒性强、适于并行处理的优点。在并行搜索、联想记忆、模式识别、知识自动获取等方面得到了广泛的应用。典型的代表如遗传算法、免疫算法、模拟退火算法、蚁群算法、微粒群算法(也就是粒子群算法,翻译不同罢了),都是一种仿生算法,基于“从大自然中获取智慧”的理念,通过人们对自然界独特规律的认知,提取出适合获取知识的一套计算工具。总的来说,通过自适应学习的特性,这些算法达到了全局优化的目的。

九、为什么粒子群算法可以找到最优解?

粒子群的个体最优解pbest在位置更新时候需要用,这个相当于一个过程变量,记录单个粒子所经过的最有位置。基本粒子群算法位置更新公式就包含pbest和gbest两个要素。

十、aprior算法应用?

1. Apriori算法:是第一个关联规则挖掘算法,也是最经典的算法。它利用逐层搜索的迭代方法找出数据库中项集的关系,以形成规则,其过程由连接(类矩阵运算)与剪枝(去掉那些没必要的中间结果)组成。该算法中项集的概念即为项的集合。包含K个项的集合为k项集。项集出现的频率是包含项集的事务数,称为项集的频率。如果某项集满足最小支持度,则称它为频繁项集。

2. aprior算法应用:

经典的关联规则数据挖掘算法Apriori 算法广泛应用于各种领域,通过对数据的关联性进行了分析和挖掘,挖掘出的这些信息在决策制定过程中具有重要的参考价值。

Apriori算法广泛应用于商业中,应用于消费市场价格分析中,它能够很快的求出各种产品之间的价格关系和它们之间的影响。通过数据挖掘,市场商人可以瞄准目标客户,采用个人股票行市、最新信息、特殊的市场推广活动或其他一些特殊的信息手段,从而极大地减少广告预算和增加收入。百货商场、超市和一些老字型大小的零售店也在进行数据挖掘,以便猜测这些年来顾客的消费习惯。

Apriori算法应用于网络安全领域,比如网络入侵检测技术中。早期中大型的电脑系统中都收集审计信息来建立跟踪档,这些审计跟踪的目的多是为了性能测试或计费,因此对攻击检测提供的有用信息比较少。它通过模式的学习和训练可以发现网络用户的异常行为模式。采用作用度的Apriori算法削弱了Apriori算法的挖掘结果规则,是网络入侵检测系统可以快速的发现用户的行为模式,能够快速的锁定攻击者,提高了基于关联规则的入侵检测系统的检测性。

Apriori算法应用于高校管理中。随着高校贫困生人数的不断增加,学校管理部门资助工作难度也越加增大。针对这一现象,提出一种基于数据挖掘算法的解决方法。将关联规则的Apriori算法应用到贫困助学体系中,并且针对经典Apriori挖掘算法存在的不足进行改进,先将事务数据库映射为一个布尔矩阵,用一种逐层递增的思想来动态的分配内存进行存储,再利用向量求"与"运算,寻找频繁项集。实验结果表明,改进后的Apriori算法在运行效率上有了很大的提升,挖掘出的规则也可以有效地辅助学校管理部门有针对性的开展贫困助学工作。

Apriori算法被广泛应用于移动通信领域。移动增值业务逐渐成为移动通信市场上最有活力、最具潜力、最受瞩目的业务。随着产业的复苏,越来越多的增值业务表现出强劲的发展势头,呈现出应用多元化、营销品牌化、管理集中化、合作纵深化的特点。针对这种趋势,在关联规则数据挖掘中广泛应用的Apriori算法被很多公司应用。依托某电信运营商正在建设的增值业务Web数据仓库平台,对来自移动增值业务方面的调查数据进行了相关的挖掘处理,从而获得了关于用户行为特征和需求的间接反映市场动态的有用信息,这些信息在指导运营商的业务运营和辅助业务提供商的决策制定等方面具有十分重要的参考价值。

在地球科学数据分析中,关联模式可以揭示海洋、陆地和大气过程之间的有意义的关系。这些信息能够帮助地球科学家更好的理解地球系统中不同的自然力之间的相互作用。

标签: {$tag}
分享给朋友:

相关文章